Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.287
Filtrar
1.
Pestic Biochem Physiol ; 200: 105829, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582575

RESUMO

Cowpea weevil, Callosobruchus maculatus, is the primary pest of stored cowpea seeds. The management of this infestation currently relies on insecticides, resulting in environmental pollution and selection of insecticide-resistant pests. Consequently, research efforts are being devoted to identify natural insecticides as sustainable and environment friendly alternatives for the control of C. maculatus. In this study, we explore the toxic effects of the nonhost seeds Parkia multijuga, Copaifera langsdorffii, Ormosia arborea, Amburana cearensis, Lonchocarpus guilleminianus, Sapindus saponaria, and Myroxylon peruiferum, on the cowpea weevil C. maculatus. Notably, all nonhost seeds led to reductions between 60 and 100% in oviposition by C. maculatus females. Additionally, the larvae were unable to penetrate the nonhost seeds. Artificial seeds containing 0.05% to 10% of cotyledon flour were toxic to C. maculatus larvae. Approximately 40% of larvae that consumed seeds containing 0.05% of O. arborea failed to develop, in contrast to control larvae. Proteomic analysis of A. cearensis and O. arborea seeds identify revealed a total of 371 proteins. From those, 237 are present in both seeds, 91 were exclusive to O. arborea seeds, and 43 were specific to A. cearensis seeds. Some of these proteins are related to defense, such as proteins containing the cupin domain and 11S seed storage protein. The in silico docking of cupin domain-containing proteins and 11S storage protein with N-acetylglucosamine (NAG)4 showed negative values of affinity energy, indicating spontaneous binding. These results showed that nonhost seeds have natural insecticide compounds with potential to control C. maculatus infestation.


Assuntos
Besouros , Inseticidas , Vigna , Gorgulhos , Animais , Feminino , Inseticidas/toxicidade , Proteômica , Larva , Sementes/química
2.
Braz J Biol ; 84: e281286, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629678

RESUMO

Salinity reduces feijão-caupi production, and the search for tolerant varieties becomes important within the agricultural context, as, in addition to being used in the field, they can be used in genetic improvement. The objective was to for a identify variety that is tolerant to salinity considering the physiological quality of seeds and seedling growth. A 2 × 4 factorial scheme was used, referring to the varieties Pingo-de-ouro and Coruja, and four electrical conductivities of water (0; 3.3; 6.6 and 9.9 dS m-1). The physiological quality of seeds and the growth of seedlings were analyzed, in addition to the cumulative germination. The Pingo-de-ouro variety showed no germination, length of the shoot and root, dry mass of the shoot and root compromised up to electrical conductivity of 6 dS m-1 in relation to 0.0 dS m-1. On the other hand, the Coruja variety showed reduced germination, increased shoot and root length. The creole variety Pingo-de-ouro proved to be tolerant to salinity.


Assuntos
Vigna , Vigna/genética , Salinidade , Cloreto de Sódio , Plântula , Germinação/fisiologia , Sementes/fisiologia
3.
Sci Rep ; 14(1): 8834, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632298

RESUMO

Rice straw, a byproduct of harvesting rice, must be disposed of by farmers in a variety of ways, including burning, which is hazardous for the environment. To address this issue, the straw needs to be utilized and turned into valuable products. One such product is nano-silica (SNPs), which will be synthesized and investigated in our study as a safe alternative to chemical insecticides. Rice straw-derived SNPs were synthesized using the Sol-Gel method. The contact toxicity of SNPs on Callosobruchus maculatus, a major pest of cowpea seeds, has been assessed. The size of synthesized SNPs was determined by transmission electron microscopy to be ~ 4 nm. The SNPs estimated LC50 on C. maculatus adults was 88.170 ppm after 48h exposure. By raising the tested concentration, SNPs treatment increased the mortality%, which reached 100% at 200 ppm exposures. Additionally, SNPs at LC50 treatment decreased adult longevity and the average number of emerged adults. The findings also verified that SNPs had no phytotoxic effects on the cowpea seeds germination. Rather, their application improved seed germination efficacy. This study proposed that rice straw can be utilized to manufacture highly efficient SNPs which can be efficiently employed to preserve stored grains from C. maculatus infestation.


Assuntos
Besouros , Inseticidas , Nanopartículas , Oryza , Vigna , Animais , Inseticidas/farmacologia , Sementes
4.
PeerJ ; 12: e16836, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638155

RESUMO

Maize and cowpea are among the staple foods most consumed by most of the African population, and are of significant importance in food security, crop diversification, biodiversity preservation, and livelihoods. In order to satisfy the growing demand for agricultural products, fertilizers and pesticides have been extensively used to increase yields and protect plants against pathogens. However, the excessive use of these chemicals has harmful consequences on the environment and also on public health. These include soil acidification, loss of biodiversity, groundwater pollution, reduced soil fertility, contamination of crops by heavy metals, etc. Therefore, essential to find alternatives to promote sustainable agriculture and ensure the food and well-being of the people. Among these alternatives, agricultural techniques that offer sustainable, environmentally friendly solutions that reduce or eliminate the excessive use of agricultural inputs are increasingly attracting the attention of researchers. One such alternative is the use of beneficial soil microorganisms such as plant growth-promoting rhizobacteria (PGPR). PGPR provides a variety of ecological services and can play an essential role as crop yield enhancers and biological control agents. They can promote root development in plants, increasing their capacity to absorb water and nutrients from the soil, increase stress tolerance, reduce disease and promote root development. Previous research has highlighted the benefits of using PGPRs to increase agricultural productivity. A thorough understanding of the mechanisms of action of PGPRs and their exploitation as biofertilizers would present a promising prospect for increasing agricultural production, particularly in maize and cowpea, and for ensuring sustainable and prosperous agriculture, while contributing to food security and reducing the impact of chemical fertilizers and pesticides on the environment. Looking ahead, PGPR research should continue to deepen our understanding of these microorganisms and their impact on crops, with a view to constantly improving sustainable agricultural practices. On the other hand, farmers and agricultural industry players need to be made aware of the benefits of PGPRs and encouraged to adopt them to promote sustainable agricultural practices.


Assuntos
Praguicidas , Vigna , Humanos , Zea mays , Fertilizantes/microbiologia , Agricultura/métodos , Produtos Agrícolas , Solo
5.
Sci Rep ; 14(1): 9378, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654029

RESUMO

Uneven rainfall and high temperature cause drought in tropical and subtropical regions which is a major challenge to cultivating summer mung bean. Potassium (K), a major essential nutrient of plants can alleviate water stress (WS) tolerance in plants. A field trial was executed under a rainout shelter with additional K fertilization including recommended K fertilizer (RKF) for relieving the harmful impact of drought in response to water use efficiency (WUE), growth, yield attributes, nutrient content, and yield of mung bean at the Regional Agricultural Research Station, BARI, Ishwardi, Pabna in two successive summer season of 2018 and 2019. Drought-tolerant genotype BMX-08010-2 (G1) and drought-susceptible cultivar BARI Mung-1 (G2) were grown by applying seven K fertilizer levels (KL) using a split-plot design with three replications, where mung bean genotypes were allotted in the main plots, and KL were assigned randomly in the sub-plots. A considerable variation was observed in the measured variables. Depending on the different applied KL and seed yield of mung bean, the water use efficiency (WUE) varied from 4.73 to 8.14 kg ha-1 mm-1. The treatment applying 125% more K with RKF (KL7) under WS gave the maximum WUE (8.14 kg ha-1 mm-1) obtaining a seed yield of 1093.60 kg ha-1. The treatment receiving only RKF under WS (KL2) provided the minimum WUE (4.73 kg ha-1 mm-1) attaining a seed yield of 825.17 kg ha-1. Results showed that various characteristics including nutrients (N, P, K, and S) content in stover and seed, total dry matter (TDM) in different growth stages, leaf area index (LAI), crop growth rate (CGR), root volume (RV), root density (RD), plant height, pod plant-1, pod length, seeds pod-1, seed weight, and seed yield in all pickings increased with increasing K levels, particularly noted with KL7. The highest grain yield (32.52%) was also obtained from KL7 compared to lower K with RKF. Overall, yield varied from 1410.37 kg ha-1 using 281 mm water (KL1; well-watered condition with RKF) to 825.17 kg ha-1 using 175 mm water (KL2). The results exhibited that the application of additional K improves the performance of all traits under WS conditions. Therefore, mung beans cultivating under WS requires additional K to diminish the negative effect of drought, and adequate use of K contributes to accomplishing sustainable productivity.


Assuntos
Secas , Potássio , Vigna , Vigna/crescimento & desenvolvimento , Vigna/genética , Vigna/efeitos dos fármacos , Potássio/metabolismo , Água/metabolismo , Fertilizantes , Nutrientes/metabolismo , Genótipo , Sementes/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/metabolismo , Desidratação , Resistência à Seca
6.
Genes (Basel) ; 15(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38540367

RESUMO

Black gram (Vigna mungo (L.) Hepper) is a pulses crop with good digestible protein and a high carbohydrate content, so it is widely consumed as human food and animal feed. Trichomes are large, specialized epidermal cells that confer advantages on plants under biotic and abiotic stresses. Genes regulating the development of trichomes are well characterized in Arabidopsis and tomato. However, little is known about trichome development in black gram. In this study, a high-density map with 5734 bin markers using an F2 population derived from a trichome-bearing and a glabrous cultivar of black gram was constructed, and a major quantitative trait locus (QTL) related to trichomes was identified. Six candidate genes were located in the mapped interval region. Fourteen single-nucleotide polymorphisms (SNPs) or insertion/deletions (indels) were associated with those genes. One indel was located in the coding region of the gene designated as Scaffold_9372_HRSCAF_11447.164. Real-time quantitative PCR (qPCR) analysis demonstrated that only one candidate gene, Scaffold_9372_HRSCAF_11447.166, was differentially expressed in the stem between the two parental lines. These two candidate genes encoded the RNA polymerase-associated protein Rtf1 and Bromodomain adjacent to zinc finger domain protein 1A (BAZ1A). These results provide insights into the regulation of trichome development in black gram. The candidate genes may be useful for creating transgenic plants with improved stress resistance and for developing molecular markers for trichome selection in black gram breeding programs.


Assuntos
Vigna , Animais , Humanos , Vigna/genética , Tricomas/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Genes de Plantas , Proteínas que Contêm Bromodomínio , Proteínas Cromossômicas não Histona/genética
7.
Genes (Basel) ; 15(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38540421

RESUMO

Cowpea (Vigna unguiculata L. Walp) is an important grain legume crop of the subtropics, particularly in West Africa, where it contributes to the livelihoods of small-scale farmers. Despite being a drought-resilient crop, cowpea production is hampered by insect pests, diseases, parasitic weeds, and various abiotic stresses. Genetic improvement can help overcome these limitations, and exploring diverse cowpea genetic resources is crucial for cowpea breeding. This study evaluated the genetic diversity of 361 cowpea accessions from the USDA core collection for the species using 102 Kompetitive Allele Specific PCR (KASP) single nucleotide polymorphism (SNP) markers. A total of 102 KASP-SNP was validated in the germplasm panel, and 72 showed polymorphism across the germplasm panel. The polymorphism information content (PIC) of all SNPs ranged from 0.1 to 0.37, with an average of 0.29, while the mean observed heterozygosity was 0.52. The population structure revealed three distinct populations that clustered into two major groups after phylogenetic analysis. Analysis of molecular variance (AMOVA) indicated greater genetic variation within populations than among populations. Although cowpea generally has a narrow genetic diversity, the accessions used in this study exhibited considerable variation across geographical regions, sub-species, and improvement status. These results indicated that the selected KASP genotyping assay can provide robust and accurate genotyping data for application in the selection and management of cowpea germplasm in breeding programs and genebanks.


Assuntos
Vigna , Estados Unidos , Vigna/genética , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Alelos , United States Department of Agriculture , Melhoramento Vegetal , Reação em Cadeia da Polimerase
8.
BMC Genomics ; 25(1): 270, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475739

RESUMO

BACKGROUND: Mung bean (Vigna radiata (L.) Wilczek), is an important pulse crop in the global south. Early flowering and maturation are advantageous traits for adaptation to northern and southern latitudes. This study investigates the genetic basis of the Days-to-Flowering trait (DTF) in mung bean, combining genome-wide association studies (GWAS) in mung bean and comparisons with orthologous genes involved with control of DTF responses in soybean (Glycine max (L) Merr) and Arabidopsis (Arabidopsis thaliana). RESULTS: The most significant associations for DTF were on mung bean chromosomes 1, 2, and 4. Only the SNPs on chromosomes 1 and 4 were heavily investigated using downstream analysis. The chromosome 1 DTF association is tightly linked with a cluster of locally duplicated FERONIA (FER) receptor-like protein kinase genes, and the SNP occurs within one of the FERONIA genes. In Arabidopsis, an orthologous FERONIA gene (AT3G51550), has been reported to regulate the expression of the FLOWERING LOCUS C (FLC). For the chromosome 4 DTF locus, the strongest candidates are Vradi04g00002773 and Vradi04g00002778, orthologous to the Arabidopsis PhyA and PIF3 genes, encoding phytochrome A (a photoreceptor protein sensitive to red to far-red light) and phytochrome-interacting factor 3, respectively. The soybean PhyA orthologs include the classical loci E3 and E4 (genes GmPhyA3, Glyma.19G224200, and GmPhyA2, Glyma.20G090000). The mung bean PhyA ortholog has been previously reported as a candidate for DTF in studies conducted in South Korea. CONCLUSION: The top two identified SNPs accounted for a significant proportion (~ 65%) of the phenotypic variability in mung bean DTF by the six significant SNPs (39.61%), with a broad-sense heritability of 0.93. The strong associations of DTF with genes that have orthologs with analogous functions in soybean and Arabidopsis provide strong circumstantial evidence that these genes are causal for this trait. The three reported loci and candidate genes provide useful targets for marker-assisted breeding in mung beans.


Assuntos
Arabidopsis , Fabaceae , Vigna , Vigna/genética , Estudo de Associação Genômica Ampla , Arabidopsis/genética , Melhoramento Vegetal , Fabaceae/genética , Soja , Genômica
9.
Int J Biol Macromol ; 265(Pt 2): 131030, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518949

RESUMO

Plant-based milk (PBM) alternatives are gaining popularity worldwide as the change of consumers' nutritional habits and health attitudes. Mung beans, recognized for their nutritional value, have gained attention as potential ingredients for PBM. Nevertheless, mung bean-based milk (MBM) faces instability issues common to other plant-based milks. This study investigated the factors influencing MBM stability focusing on raw materials. We selected 6 out of 20 varieties based on their MBM centrifugation sedimentation rates, representing both stable and unstable MBM. Stable MBM exhibited distinct advantages, including reduced separation rate, smaller particle size, lower viscosity, fewer protein aggregates, higher soluble protein content, and increased consumer acceptance. Major nutritional components such as protein, starch, and lipids were not significant different between stable and unstable MBM varieties. The pivotal distinction may lay in the protein properties and composition. Stable MBM varieties exhibited significantly improved protein solubility and emulsion stability, along with elevated concentrations of legume-like acidic subunits, basic 7S proteins, and 28 kDa and 26 kDa vicilin-like subunits. The increasement of these proteins likely contributed to the improvement in protein characteristics that affect MBM stability. These findings offer valuable insights for raw material selection and guidance for future mung bean breeding to enhance mung bean milk production.


Assuntos
Fabaceae , Vigna , Animais , Leite , Melhoramento Vegetal , Amido
10.
Food Funct ; 15(8): 4154-4169, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38482844

RESUMO

The consumption of dietary fiber is beneficial for gut health, but the role of bound polyphenols in dietary fiber has lacked systematic study. The aim of this study is to evaluate the ameliorative effect of mung bean coat dietary fiber (MDF) on DSS-induced ulcerative colitis in mice in the presence and absence of bound polyphenols. Compared to polyphenol-removed MDF (PR-MDF), MDF and formulated-MDF (F-MDF,backfilling polyphenols by the amount of extracted from MDF into PR-MDF) alleviated symptoms such as weight loss and colonic injury in mice with colitis, effectively reduced excessive inflammatory responses, and the bound polyphenols restored the integrity of the intestinal barrier by promoting the expression of tight junction proteins. Additionally, bound polyphenols restored the expression of autophagy-related proteins (mTOR, beclin-1, Atg5 and Atg7) and inhibited the excessive expression of apoptotic-related proteins (Bax, caspase-9, and caspase-3). Furthermore, bound polyphenols could ameliorate the dysregulation of the intestinal microbiota by increasing the abundance of beneficial bacteria and inhibiting the abundance of harmful bacteria. Thus, it can be concluded that the presence of bound polyphenols in MDF plays a key role in the alleviation of DSS-induced ulcerative colitis.


Assuntos
Colite Ulcerativa , Sulfato de Dextrana , Fibras na Dieta , Microbioma Gastrointestinal , Polifenóis , Vigna , Animais , Polifenóis/farmacologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colite Ulcerativa/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Fibras na Dieta/farmacologia , Sulfato de Dextrana/efeitos adversos , Vigna/química , Masculino , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Humanos
11.
PLoS One ; 19(3): e0297892, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38451974

RESUMO

Graphene has promising applications in agriculture and forestry. In the current study, six different concentrations of graphene (0mg/L, 0.01mg/L, 0.10mg/L, 1.00mg/L, 10.00mg/L, and 100.00mg/L) were used to investigate its effect on the growth and development of V. angularis plants in soil culture. The results showed that the group treated with 1.00mg/L graphene (G-1) had significantly increased plant height (19.86%), stem diameter (24.33%), and leaf area (13.69%), compared to the control group (CK). Moreover, all concentrations of graphene had positive effects on the total root length, total root surface area, and the number of root tips of V. angularis. Compared to the CK group, the G-1 group had significantly increased leaf water potential (37.89%), leaf conductivity (2.25%), and SOD, POD, and CAT activities (47.67%, 35.22%, and 199.3%, respectively). The G-1 group also showed improved leaf net photosynthetic rate, chlorophyll content, and soluble sugar content (51.28%, 24.25%, and 38.35%, respectively), compared to the CK group. Additionally, 1.00mg/L graphene led to a 23.88% increase in the podding rate and a 17.04% increase in the yield of V. angularis plants. The rhizosphere soil of V. angularis treated with 1.00mg/L graphene had a 25.14% increase in hydrolyzable nitrogen content and a 66.67% increase in available phosphorus content. RNA-seq data indicated that 1.00mg/L graphene induced the expression of photosynthesis and nitrogen transmembrane transport genes, including ATP synthase subunit b, photosystem I reaction center subunit XI, photosystem I reaction center subunit IV A, ferredoxin, and psbP-like protein 1, as well as genes for photosynthesis antenna proteins, glutamine synthetase, glutamate dehydrogenase 1, cyanate hydratase, protein fluG-like, and NRT1/PTR family, suggesting that graphene promoted the growth and development of V. angularis by enhancing the photosynthesis and nitrogen metabolism processes in V. angularis plants. Our results indicated that a suitable concentration of graphene could significantly promote the growth of V. angularis plants in soil.


Assuntos
Grafite , Vigna , Vigna/metabolismo , Grafite/farmacologia , Grafite/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Nitrogênio/metabolismo , Solo
12.
PeerJ ; 12: e16722, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406271

RESUMO

Quantitative trait loci (QTL) mapping is used for the precise localization of genomic regions regulating various traits in plants. Two major QTLs regulating Soil Plant Analysis Development (SPAD) value (qSPAD-7-1) and trichome density (qTric-7-2) in mungbean were identified using recombinant inbred line (RIL) populations (PMR-1×Pusa Baisakhi) on chromosome 7. Functional analysis of QTL region identified 35 candidate genes for SPAD value (16 No) and trichome (19 No) traits. The candidate genes regulating trichome density on the dorsal leaf surface of the mungbean include VRADI07G24840, VRADI07G17780, and VRADI07G15650, which encodes for ZFP6, TFs bHLH DNA-binding superfamily protein, and MYB102, respectively. Also, candidate genes having vital roles in chlorophyll biosynthesis are VRADIO7G29860, VRADIO7G29450, and VRADIO7G28520, which encodes for s-adenosyl-L-methionine, FTSHI1 protein, and CRS2-associated factor, respectively. The findings unfolded the opportunity for the development of customized genotypes having high SPAD value and high trichome density having a possible role in yield and mungbean yellow vein mosaic India virus (MYMIV) resistance in mungbean.


Assuntos
Locos de Características Quantitativas , Vigna , Locos de Características Quantitativas/genética , Vigna/genética , Mapeamento Cromossômico , Genótipo , Solo , Tricomas/genética , Folhas de Planta/genética
13.
J Econ Entomol ; 117(2): 448-456, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38408026

RESUMO

Megalurothrips usitatus (Bagrall) is one of the most important pests of cowpea, Vigna unguiculata (Linn.) Walp in South China. Four Orius species, including Orius minutus (L.), Orius nagaii (Yasunaga), Orius sauteri (Poppius), and Orius strigicollis (Poppius), have been commercially produced and widely used as natural enemies of pests in China. In this study, we evaluated the control efficiency of these Orius species on M. usitatus in tropical Hainan Province, China, by recording the survival rates, developmental times, and predation effects in laboratory and semi-field conditions. Laboratory experiments showed that all these 4 Orius species preyed on M. usitatus under the experimental temperatures (25, 30, and 35 °C), and O. strigicollis exhibited the highest survival rate and predation effect. Semi-field cage experiments showed that the control effect of 4 Orius species on M. usitatus was significantly higher than that under normal chemical control, with O. strigicollis having the highest effect. Greenhouse experiments in Hainan Province, China, confirmed that O. strigicollis had a significant control effect on M. usitatus. Our study indicated that O. strigicollis has a significant potential for the control of M. usitatus in cowpea fields in southern China.


Assuntos
Heterópteros , Tisanópteros , Vigna , Animais , Comportamento Predatório , China
14.
J Environ Manage ; 353: 120172, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38310799

RESUMO

Understanding pesticide residue patterns in crops is important for ensuring human health. However, data on residue accumulation and distribution in cowpeas grown in the greenhouse and open field are lacking. Our results suggest that acetamiprid, chlorantraniliprole, cyromazine, and thiamethoxam residues in greenhouse cowpeas were 1.03-15.32 times higher than those in open field cowpeas. Moreover, repeated spraying contributed to the accumulation of pesticide residues in cowpeas. Clothianidin, a thiamethoxam metabolite, was detected at 1.04-86.00 µg/kg in cowpeas. Pesticide residues in old cowpeas were higher than those in tender cowpeas, and the lower half of the plants had higher pesticide residues than did the upper half. Moreover, pesticide residues differed between the upper and lower halves of the same cowpea pod. Chronic and acute dietary risk assessments indicated that the human health risk was within acceptable levels of cowpea consumption. Given their high residue levels and potential accumulation, pesticides in cowpeas should be continuously assessed.


Assuntos
Resíduos de Praguicidas , Praguicidas , Vigna , Humanos , Tiametoxam/análise , Tiametoxam/metabolismo , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/química , Vigna/metabolismo , Bioacumulação , Contaminação de Alimentos/análise
15.
Sci Rep ; 14(1): 4567, 2024 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-38403625

RESUMO

Development of high yielding cowpea varieties coupled with good taste and rich in essential minerals can promote consumption and thus nutrition and profitability. The sweet taste of cowpea grain is determined by its sugar content, which comprises mainly sucrose and galacto-oligosaccharides (GOS) including raffinose and stachyose. However, GOS are indigestible and their fermentation in the colon can produce excess intestinal gas, causing undesirable bloating and flatulence. In this study, we aimed to examine variation in grain sugar and mineral concentrations, then map quantitative trait loci (QTLs) and estimate genomic-prediction (GP) accuracies for possible application in breeding. Grain samples were collected from a multi-parent advanced generation intercross (MAGIC) population grown in California during 2016-2017. Grain sugars were assayed using high-performance liquid chromatography. Grain minerals were determined by inductively coupled plasma-optical emission spectrometry and combustion. Considerable variation was observed for sucrose (0.6-6.9%) and stachyose (2.3-8.4%). Major QTLs for sucrose (QSuc.vu-1.1), stachyose (QSta.vu-7.1), copper (QCu.vu-1.1) and manganese (QMn.vu-5.1) were identified. Allelic effects of major sugar QTLs were validated using the MAGIC grain samples grown in West Africa in 2017. GP accuracies for minerals were moderate (0.4-0.58). These findings help guide future breeding efforts to develop mineral-rich cowpea varieties with desirable sugar content.


Assuntos
Locos de Características Quantitativas , Vigna , Locos de Características Quantitativas/genética , Vigna/genética , Açúcares , Melhoramento Vegetal , Minerais , Grão Comestível/genética , Genômica , Sacarose
16.
Sci Rep ; 14(1): 3020, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321045

RESUMO

Over the past century, the average surface temperature and recurrent heatwaves have been steadily rising, especially during the summer season, which is affecting the yield potential of most food crops. Hence, diversification in cropping systems with suitable fertilizer management is an urgent need to ensure high yield potential during the summer season. Since intercropping has emerged as an important strategy to increase food production, the present study comprises five intercropping systems in the main plot (sole cowpea, sole baby corn, cowpea + baby corn in 2:1, 3:1, and 4:1 row ratio), three levels of fertilizer viz. 100 (N20 P40), 125 (N25 P50), and 150% (N30 P60) recommended dose of fertilizer (RDF) in the subplot, along with two stress-mitigating chemicals (0.5% CaCl2 and 1% KNO3) in the sub-sub plots. A split-split plot system with four replications was established to carry out the field experiment. The effect of intercropping, fertilizer levels, and stress-mitigating chemicals on crop growth rate (CGR), relative growth rate (RGR), plant temperature, relative water content (RWC) and chlorophyll content of cowpea and baby corn, as well as cowpea equivalent yield (CEY), was investigated during the summer seasons of 2019 and 2020. The experiment was conducted at Agriculture University, Kota (Rajasthan), India. Results showed that CGR, RGR, RWC and chlorophyll content of both crops and CEY were maximum under intercropping of cowpea and baby corn in a 2:1 row ratio compared to other intercropping systems. However, the plant temperature of both crops was significantly lower under this system. CEY, CGR, RGR, and chlorophyll content were considerably greater in the subplots with a fertilizer application of 150% RDF compared to lower levels of fertilizer (100 and 125% RDF). Our findings further show that foliar application of CaCl2 0.5% at the flowering and pod-developing stages of cowpea dramatically boosted CEY, CGR, RGR, RWC, and chlorophyll content of both crops and lowered the plant temperature.


Assuntos
Vigna , Humanos , Estações do Ano , Zea mays , Fertilizantes , Cloreto de Cálcio , Índia , Agricultura/métodos , Produtos Agrícolas , Fertilidade , Clorofila
17.
BMC Genomics ; 25(1): 149, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321384

RESUMO

BACKGROUND: The mediator complex subunits (MED) constitutes a multiprotein complex, with each subunit intricately involved in crucial aspects of plant growth, development, and responses to stress. Nevertheless, scant reports pertain to the VunMED gene within the context of asparagus bean (Vigna unguiculata ssp. sesquipedialis). Establishing the identification and exploring the responsiveness of VunMED to cold stress forms a robust foundation for the cultivation of cold-tolerant asparagus bean cultivars. RESULTS: Within this study, a comprehensive genome-wide identification of VunMED genes was executed in the asparagus bean cultivar 'Ningjiang3', resulting in the discovery of 36 distinct VunMED genes. A phylogenetic analysis encompassing 232 MED genes from diverse species, including Arabidopsis, tomatoes, soybeans, mung beans, cowpeas, and asparagus beans, underscored the highly conserved nature of MED gene sequences. Throughout evolutionary processes, each VunMED gene underwent purification and neutral selection, with the exception of VunMED19a. Notably, VunMED9/10b/12/13/17/23 exhibited structural variations discernible across four cowpea species. Divergent patterns of temporal and spatial expression were evident among VunMED genes, with a prominent role attributed to most genes during early fruit development. Additionally, an analysis of promoter cis-acting elements was performed, followed by qRT-PCR assessments on roots, stems, and leaves to gauge relative expression after exposure to cold stress and subsequent recovery. Both treatments induced transcriptional alterations in VunMED genes, with particularly pronounced effects observed in root-based genes following cold stress. Elucidating the interrelationships between subunits involved a preliminary understanding facilitated by correlation and principal component analyses. CONCLUSIONS: This study elucidates the pivotal contribution of VunMED genes to the growth, development, and response to cold stress in asparagus beans. Furthermore, it offers a valuable point of reference regarding the individual roles of MED subunits.


Assuntos
Fabaceae , Vigna , Vigna/genética , Filogenia , Resposta ao Choque Frio , Complexo Mediador/genética , Fabaceae/genética
18.
Sci Rep ; 14(1): 3189, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326435

RESUMO

Feeding billions, a healthy and nutritious diet in the era of climate change is a major challenge before plant breeders, geneticists and agronomist. In this context, the continuous search for adaptive and nutritious crops could be a better alternative to combat the problems of hunger and malnutrition. The zombi pea, a nutritious and underutilized leguminous vegetable, is one of such better alternatives to feed billions a nutritious food besides being a potential gene source for breeding abiotic stress resistant varieties. To evaluate its potential as a wonder crop in the tropical and subtropical regions of India, the nutritional status of tubers, pods and pericarp were investigated under different treatments of plant spacings and deblossoming. The experiment was conducted in split plot design with three replications and eight treatments during 2021-2022 in the coastal regions of India. The nutrient profiling in tubers and pericarp of pods in zombi pea revealed higher accumulation of nutrients viz. potassium (K), magnesium (Mg), iron (Fe), manganese (Mn) and zinc (Zn) with blossom retention. The zombi pea tubers reflected significantly high protein accumulation with the increase in plant spacing. The results pertaining to nutrient profiling in the pods of zombi pea indicated that the plant spacing has no significant effect on the accumulation of majority of nutrients under study. The above-mentioned findings are conspicuously novel and valuable. The present study would pave the way for understanding nutritional importance and breeding potential of this orphan crop. The blossom retention renders higher nutrient accumulation in tubers, pods and pericarp of zombi pea. Deblossoming has no significant influence on nutritional profile of this wonder crop but, wider spacing is effective in producing tubers with high protein content.


Assuntos
Estado Nutricional , Vigna , Vigna/genética , Ervilhas/genética , Melhoramento Vegetal , Produtos Agrícolas/genética
19.
ACS Appl Mater Interfaces ; 16(9): 11185-11193, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38407055

RESUMO

Tomato (Solanum lycopersicum L.), a globally significant vegetable crop, faces a substantial threat from viral diseases, specifically Groundnut bud necrosis orthotospovirus (GBNV). Traditional approaches such as removal of infected plants, use of barrier crops, and insecticides have been employed but they have not proven to be consistently effective. Consequently, an alternative approach involving the stimulation of host resistance through the Plant Growth Promoting Rhizobacteria (PGPR) was adopted. From the previous study, B. subtilis (BST8), B. subtilis (Bbv57), and B. amyloliquefaciens (Ka1) were found to be effective against GBNV in cowpea. To enhance the shelf life of Bacillus spp. and improve the water retention capacity of tomato leaf surfaces, these bacteria were encapsulated within nanosilica, an identified host defense inducer. An effective inverse Pickering emulsion with a 2.5% (w/v) silica concentration was developed and characterized using diverse techniques, viz., phase contrast, scanning electron microscopy, confocal microscopy, contact angle goniometry, and variable angle ellipsometry. The prepared emulsion was then tested for its antiviral efficacy against GBNV in cowpea and tomatoes. Nanoencapsulated Bacillus consortia significantly reduced GBNV lesions in cowpea to 0.63 per leaf compared to the control (6.63). DAC-ELISA revealed a virus titer of 0.75 (3.33 times lower than the control), indicating antiviral efficacy. In tomato (var. PKM1), the consortia achieved an impressive 77.91% disease reduction (19% DSI) at 14 days post-inoculation (DPI), surpassing both nanoemulsion and consortia alone (DSIs: 67 and 30%, respectively). Nanoencapsulated Bacillus consortia demonstrated the lowest GBNV titer in tomatoes (0.86 vs control-3.32) through DAC-ELISA. This study introduces a promising strategy for the effective management of GBNV in cowpea and tomatoes using nanoencapsulated Bacillus consortia, underscoring its potential as an effective solution in crop protection.


Assuntos
Bacillus , Fabaceae , Solanum lycopersicum , Tospovirus , Vigna , Tospovirus/fisiologia , Emulsões , Antivirais
20.
Sci Rep ; 14(1): 4602, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409312

RESUMO

Promoting the intake of foods rich in vitamin A is key to combating the increase in vitamin A deficiency. This research focused on the utilization of orange-fleshed sweet potatoes (a tuber-based food), cowpea (a pulse), and ripe bananas (a fruit) for the production of flour mix as a means to reduce Vitamin A deficiency in children. Different ratios of sweet potato-cowpea-banana (PCB) mix, resulting in 8 different blended samples, were optimized. The flour mix was evaluated for its overall acceptability, vitamin A content, beta-carotene, and other nutritional and functional properties. The panelists rated the sweet potato-cowpea banana blends labeled PCB8 (60% OFSP, 30% cowpea, 5% ripe banana flour, and 5% sugar) as most preferred and acceptable with average scores of 8.96 points for color, 8.75 points for flavor, 8.88 points for appearance, 8.33 points for taste, 8.07 points for texture, and 8.39 points for overall acceptability on a 9-point hedonic scale. The vitamin A and beta-carotene contents ranged 7.62 to 8.35 mg/100 g and 0.15-0.17 mg/100 g for all blends. A significant difference in the functional properties of the flour mix were observed with an increase in the ratio of sweet potato flour addition. Findings from this study show that the flour mix PCB4 (65% sweet potato, 30% cowpea, and 5% ripe banana flour) was acceptable (8.15) and is recommended based on its vitamin A content (8.35 mg/100 g), nutritional properties, and functional properties. The study showed that locally available food commodities have good nutritional value that will help reduce vitamin A deficiency in children.


Assuntos
Citrus sinensis , Ipomoea batatas , Musa , Vigna , Deficiência de Vitamina A , Criança , Humanos , Vitamina A , beta Caroteno , Farinha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...